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A possibility is indicated of appearance of density excutlions in one-dimensional 
unsteady fluid flows near the critical point of the phase equilibrium, resulting 
from the singularities in the equation of state. 

The present investigatiom are concerned with the question, whether the c laui -  
cal solutions of the problem and the initial conditiont for the one-dimensional 
urateady gasdynamic equations can become infinite in the nonisoentropic case. 
Here we have to consider a system of three quasilinear hyperbolic equations 
which, as we know [1 .2 ] ,  usually have unbounded solutiom. On the other hand, 
the system of gasdynamic equatiom has a number of specific properties. Of t h e e  
the most important is the presence of a single invariant, i .e .  of a function which 
remains bounded [1] .  Another inspcrtant property comists of the fact that the 
generalized Riemann invariancs satisfy nsulti-dimensional integral equations of 
Volterra type, in which the cone of inte~ation is represented by the domain of 
definition of the hyperbolic equations and the boundedneu of the solution follows 
from the fine properties of the integrability of the kernel. In the terms of the 
gasdynamic equatiom the latter lead to re.~ictions imposed on the equations of 
state. The properties themselves follow from the boundedneu of the variation of 
entropy along the sonic characteristics and from the weak linearity (tartgency) 
of the entropic characteristics [3]. 

The conditions which must be imposed on the equations of state in order to secure the 
boundedness, are e x p r e ~ d  by the following inequalities r31 

(i) 
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Here p is the density. S is entropy per unit mass. V is the specific volume, p = p ( p , 8 )  
is the pressme, T is the temperature and cv is the heat  capaci ty  of  a unit mass. 

We consider the case when the second of  the above restrictions does not hold [3]. This 
occurs at the cr i t ical  point of  the phase equilibrium in accordance with the phenomen-  
ological  theory [4] based on the fact  that  heat  capaci ty  has a logari thmic singularity. 
A possibility is indicated of  appearance of  gasdynamic effects, consisting of  localized 
unbounded density excursions and associated with the properties arising from the unboun- 
dedness of  the solution of  the gasdynamic equations obtained in [3. 5] .  

We consider the Cauchy problem for the gasdynamic equations in Lagrangian coordi-  
nates with the dissipative terms absent 

8v Ou 8u 8p 8s 
0"7 - -~q--o,  0-7 + ~ . = o ,  o-7 ~ o  

u (O, q) ---- O, v (O, q) = O, O t (O, q) = Oi ° (q), q E~[a, b], 

s= S--S., v =  V - -  V . ,  O= T--T. 

where S . ,  T. and IT. denote the values which the thermodynamic  functions assume at 
the cr i t ical  point, t is t ime, q is the La~rangian mass coordinate and . is veloci ty .  

It is assumed that 0 i (q) is a sequence of  symmetr ic  nonnegative smooth functions 
possessing a unique local  min imum at  the point q == 0, the min imum tending to zero 
along the functional sequence. In other words, at the initial instant we have a homoge-  
neous phase with cr i t ical  density, and the state at the point q ffi= 0 is nearly c r i t i c a l  

The pressure near the cr i t ical  point is compmed of  two parts [4], the regular part Pl 
and the irregular part P2. The regular part is represented by a series in the powers o f  0 
and v and, within the accuracy of  up to the higher order terms, it has the following 
form [63 

Pt =ffi - -  A e v - -  Bv  a / 3 + / (O) (.4 == coast, B == coast) 

where ] (0) is an undefined regular function. In accordance with [4] the principal term 
of the expansion for f (0) near the cri t ical  point is equal to E0, where E ffi= const > 0. 
The irregular part is equal to (OFt / Or) o, where F t represents an irregular supplement 
to the free energy [4] 

F, ---- ctxO t in [(0 + ~H) ~" + ?:~.41 + 02h (0 / H) 

Here h is a bounded function (of no importance in what follows), c~t, ~ and ? = const, 
and o~i < 0. 

The irregular supplement to the heat  capaci ty is [4] 

Cv, ---- 2~t In [(0 + ~H) ~ ÷ 7 ~ ] +  h~ (0 / H) (2) 

where hx is another bounded function also unimportant in the following. 
It can be shown that under these conditions the adiabat ic  speed of  sound a == (#p/Op)~/ '  

tends to zero on approaching the cr i t ical  point. We also find that as (O2pl#pOl)(Op/Op)~l= 

(0 In a n / OS), the second restriction of  (1) does not hold. 
Let us now write an expression for the pressure near the cri t ical  point as the function 

of the density and specific entropy during, at least, the initial instant, i. e. when v ---- 0, 
so that the results of  [3, 5] can be ~ubsequemly applied. 

By (2) we have the following relat ion for the derivative (OS / 00)~ near the czitical 
point 

(OS / 00)~ = Cv, / T + (2=1 / T) In [(0 --  ~v~) n + ?2v4] + [/h (0/H)] / T 

where Cv, denotes the regular part of  the heat capaci ty.  
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In the exact  theory [4] the part of the coefficients accompanying the logari thmic 
terms in the irregular parts of  the free energy and heat capacity is played by the unde- 
termined regular functions of t} and v which are not zero when 0 = v = 0. It can there- 
fore be assumed that the logari thmic part of the derivative (aS / 00)~ near the cri t ical  
point, which will be important in what follows, has the form 

(@S / 80)vlog = ~.IVv, In{(e + j~'~)~ -b ?Sv~], (%, yt == const, ~ < O, ~,I > O) (3) 

Let us now replace (3) by 

(~8 / o~e)~ == =sl ~ '  (e ~ ~v=) - t  (=s = const > 0) (4) 

where e is a small  positive number. This means that we have replaced the logari thmic 
growth of  heat  capaci ty by one increasing as a small  power, which simplifies the c o m -  
putations considerably without affecting the final result. Moreover we achieve further 
simplification by neglecting the term y-"u', as it.s effect  in the initial form of the Cauchy 
problem at the first instant, may be assumed insignificam. 

Integrating (4) we obtain, with the accuracy of up to an arbitrary function ,,, the fol-  
lowing prlncipal contribution to the entropy 

s = ~ V  ~' (O + ~v*)(z-') / Cl - -  e) 

from which we have 
0 = ( i  - -  8 ) *  p ~ ' % ~ % ' ~  - -  ~v'- ( o  = i / ( t  - -  ~)) 

The corresponding principal contribution to the irregular part of the pressure has the form 

o~T~P ~ 1  (O + ~v2)(2-') ~,T '~' (O + ~ ) (z - , )  2~v 
P' = (i '--' ',) (2 -- s) + (i -- s) 

Since v = 0 and P2 ~ 0 (2-') we find, when investigating the initial Cauchy problem, 
that the principal contribution is made by the term EO of the regular .part of the pres- 
sure. When t == 0 ,  this contribution is 

e) p s % (5) px=E(I-- ~ ~"~ ~-~ 

Equation (5) is of the type p==A2op'C'Ss=/Te, where To is replaced by Txa~ and 2~z= ¢e. 
, i When the Cauchy problem with the initial entropy S0(9) = Seq '~ -r Smm and density 

pO(q) pO(pO, So, ~, t == Smin = const > O) was considered, the solution obtained in [3, 5] 
for this class of equations of state behaved as follows. The pressure gradients by virtue 

of the entropy gradienls, force the gas to flow into the point 9= O. If cc~[0.5, i] and 
the maximum density at the point q = 0 in the corresponding solution tends to infinity 

as Smin 0 . When ~ = i, the time in which the maximum is reached, tends to a 

finite value (the "break-through"-type unboundedness), when ~ ~ (0.5, =~*(?0)), the 
time rends to zero (the "excursion"-type unboundedness [5]). 

-- -}- Oral n and -. O, where Considering the sequence of  tempe~atm'es Oe(q) OOq~ i i Omin 
8 °, ~ = const > 0 near the c~itical point we find, tha t  as S0(q) - q~', the condition 
0.5 < ~ < i yields i < ,it < 2. Naturally the density does not become infinite became,  
e, g, the expression for p,  contains another term which gives rise to counter pressure with 
increasing density. All the same, if formally B - .  O, then the maximum density tends 
to infinity, i. e. at some 2maU values of  B one can obtain a strong, localized density 
peak near the cr i t ical  point of  the phase equilibrium. 

N o t e .  It was communica ted  to the author by the referee that density excursions are 
Indeed observed in practice in the energy generators, in the flows near the cri t ical  point 



O&Sdy.-m~c effeoCS aC 1;he crittoa.l point; of the phase equ~lbrlum 159 

of the phase equilibrium. 
In conclusion the author thanks L. A.Galin, S.l. Anisimov and M.la. Azbel' for asses- 

sment of this paper. 
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We consider a non-self-similar problem of point explosion in a detonating gas, 
in a medium of variable initial density. Analytic expressions are obtained show- 
ing the dependence of the pressure, density and gas velocity on the distance from 
the origin of explosion and the radius of detonation wave, the latter obtained by 
solving a differential equation. Computations are performed for the cases of 
spherical and cylindrical symmetry for various values of the adiabatic exponent, 
and the variation of initial density exponent. 

Let us consider a perfect gas which is inviscid and non-heat-conducting. Suppose that 
an instantaneous explosion of finite energy E0 occurs at the insr~t  t = 0 in an unboun- 
ded medium at rest (~ = 0) at a point, or along a plane, or along a staighr line [1] .  
The explosion generates a strong shock wave which propagates through the gas and heats 
it up to the state at which rapid combustion becomes possible. Assuming that the energy 
E o is large and much larger than the amount of energy Qa released during the gas com- 
bustion, we can infer that the gas burns in the direct vicinity of the shock-wave front. 
In this case we can consider the shock wave and the chemical reaction zone together, 
as a single surface of a strong explosion with release of heat, i .e .  treat it as a detonation- 
wave front. 


